Know Your Stage of Baldness and Its Recommended Treatment

There are specific stages of male as well as female hair loss and you need to find out what stage of your baldness and then go for a treatment accordingly. In this article, we will cover stages of male hair loss.

Stages of male hair loss and recommended treatment:

Stage 1: Stage one is a normal stage, where there are no visible signs at all, you will only find few hairs fall while combing or washing your hairs.

Treatment: Opt for a high protein diet, give your head scalp a gentle massage every day to improve scalp blood circulation, try to be stress-free

Stage 2: We can say that this is the early stage of baldness, and if you reached this stage, you need to consider taking advice from an expert doctor. You will see a deep loss of hair on top of your head.

Treatment: In this stage, doctor will suggest you a combination of treatment including, derma rolling for improving scalp absorption with Minoxidil and laser hair therapy.

Stage 3: You are just in the stage of acute hair loss or baldness stage. In this stage, you will see a thin line of hair loss area going from one side of your front forehead to the other side creating a bridge like structure; at times the hair loss area Is visible from the top of your head.

Treatment: At this stage, surgeons will suggest to have hair grafts, no more than 3000 to 4000 grafts to cover the area and will advise applying Minoxidil or other related supplements to maintain the growth of non affected areas.

Stage 4: If you click a picture of your head from the top side you might see a horseshoe shape formation of the area and further adding to this you will see an increase in the area from sides of the head.

Treatment: At this stage, expert doctor might advise you to go for hair transplantation from the back of your head where hair growth is good.

Stage 5: Only a thin line of hair might be visible on the back or sideways of your head.

Treatment: In this stage, the only methods through which you can restore your hairs are hair bonding or replacement with weaving technique.

Though all the recommended treatment for different hair loss stages may differ from patient to patient, so before opting for a solution it would be best to consult the hair transplant surgeon.

Accurate Diagnosis & Patient Comfort at the Core of Innovation in ECG/EKG, EEG, and MRI Technologies

Over the past decade, researchers have made several undeniable breakthroughs in curing diseases that were once thought to be deadly and incurable. And this feat can be attributed to significant improvements in diseases diagnosis and testing.

In recent years, newer as well as safer methods of disease testing have been developed to avoid incorrect diagnosis among patients and to ensure they do not have to undergo any additional harm. Development of the latest diagnostic tests and procedures – such as electrocardiogram (ECG), electroencephalography (EEG), and magnetic resonance imaging (MRI) – enables physicians to make accurate decisions about their patients.

Thanks to constant innovation and dedication of healthcare companies and research organizations, diagnostic testing has helped achieve tangible improvements in not just the survival of patients but also in their overall health and quality of life.

Portable and Wearable ECG/EKG Monitors a Prominent Innovation in Cardiovascular Health

The electrocardiogram (ECG) has played a crucial role in understanding cardiovascular diseases. Its wide scope of application encompasses clinical diagnosis and prognosis of cardiovascular diseases, biomedical recognition, health assessment, fatigue study, and others. Ongoing research in the technology is mainly focused on accuracy of ECG diagnosis and application, big data mining for ECG, and improved ECG instrumentation.

Remote ECG monitoring systems are fast becoming commonplace medical devices for remote as well as long-term physiological monitoring. These devices are not just targeted for elderly and frail patients but also for healthy individuals merely looking to monitor overall wellbeing.

Wearable technology is one of the most prominent innovations in the field and continues to be used in everyday clinical practice.

Qardio, Inc., a global digital health company, launched a revolutionary wearable ECG monitor in January 2017. The QardioCore is reportedly the first wearable medical ECG/EKG monitor that lets users monitor heart health without any patches or wires. This innovation is a far cry from conventional ECG monitors used in hospitals, which are known to be bulky and burdensome. By contrast, this wearable device is designed for monitoring anywhere and anytime.

Looking to capitalize on the growing trend of remote patient monitoring, especially to maintain heart health, medical device companies are working on devising new and innovative methods of tracking patient health. One such example is startup AliveCor’s Heart Monitor. The monitor comprises a case that can be simply attached to the back an Android device or an iPhone, while the test is administered and results are revealed through the company’s mobile app AliveECG. This gives new meaning to the concept of having health at your fingertips.

Increased Focus on making EEG Technology Minimally Invasive

Generation after generation, scientists and researchers have tried to understand the human brain. The 18th century pseudoscience of “bumpology”, which believed that the shape of a person’s skull lent insights into their mental state and personality, was discredited as a science 50 years after its introduction. It was nearly a century later that studying the electrical activity inside a living brain came to be the go-to technique to understand various neurological conditions.

Although the technique, called electroencephalography (EEG), was rather invasive initially, contemporary research and modern technology have enabled the development of non-invasive methods to study brain function, pathology, and behavior.

In recent years, the many intrinsic advantages of EEG have allowed the technique to expand its application scope to include diagnosis of conditions such as epilepsy, seizures, dizziness, head injuries, brain tumors, headaches, and sleep disorders. After a groundbreaking move away from analog to digital recordings, automated and integrated computer-EEG systems have opened doors to adaptable and accessible research methodologies. These systems have also become relatively portable and cheap.

Capitalizing on recent technological innovations, Maryland-based BrainScope raised U$16 million in August 2017 to be dedicated toward research and development of mobile, non-invasive devices to assess traumatic brain injury. In September 2016, the company launched “Ahead 300″, the third version of its commercial product BrainScope One. It comprises an EEG headset and a handheld display equipment to help clinicians conduct 4 tests to determine the existence of a traumatic brain injury. These tests – two cognitive performance and two sensor-based tests – have the potential to allow the device to eliminate one third of unnecessary CT scans.

For several developing regions and countries, access to costly diagnostic technologies such as EEG means overcoming a number of geographic and economic constraints. However, penetration of the Internet and proliferation of smartphone usage has brought these countries closer to gaining access to advanced technologies. The Bhutan Epilepsy Project, for instance, has been tackling the aforementioned challenges by using a smartphone-based EEG. Developed by the Technical University of Denmark, the device and overall setup amounts to less than US$500, is highly portable, and is easy to use.

Constant Innovation in MRI Hardware and Software

Perhaps one of the most common and widely-used diagnostic/medical imaging technique, magnetic resonance imaging (MRI) has been highly valued for its versatility. MRI has a wide range of applications in the field of medical diagnosis, ranging from neuroimaging, cardiovascular, and musculoskeletal to angiography, liver, and gastrointestinal. And even though the effect of this imaging technique on the improved health outcome of a patient is uncertain, its role in the diagnosis and treatment of various disorders is irrefutable. Based on recent developments, GE Healthcare has been among the front-runners in MRI technology.

Innovation in design is crucial in MR technology and this can add immense value to patient-friendly medical imaging. Take the 2011 Optima MR430s, for instance. This GE Healthcare innovation marked a major leap in MR imaging as it was designed for specific targeted anatomy, be it an arm or a leg, rather than traditional whole-body systems. Overcoming the challenges of immobilization and patient confinement, this innovative scanner has helped improve patient experience. For physicians, this has meant fewer demands on a full-body scanner, smarter investment options, relieving patient backlogs, and low total cost of ownership.

In the last couple of years, however, major advances in MRI technology have been on the software side. This has resulted in more simplified cardiac imaging workflows, faster contrast scans, and allowing MR scans of the lungs.

In September 2016, the US FDA granted approval to the MAGnetic resonance image Compilation, or MAGiC, software by GE Healthcare. This is reportedly a first-of-its-kind multi-contrast MRI technique that delivers eight contrast media in a one acquisition. This is done in a fraction of the time taken by traditional imaging, primarily by allowing users to flexibly manipulate MR images retrospectively. This has led to fewer rescans and therefore considerable time and cost savings.

Cardiac MRI has been a rather limited field owing to lengthy exam times, complexity, and high cost. RSNA 2015 saw GE Healthcare introduce a new MRI technology, one with the potential to simplify cardiac MR to a great extent. The ViosWorks cardiac MRI software helps create what the company calls a 7-D cardiac MRI exam.

Conclusion

Advances in diagnostic/medical imaging over the last five years alone have revolutionized practically every aspect of medicine. Access to detailed imaging has enabled physicians to see things from a new perspective. With doctors realizing just how accurate and valuable these tests can be and manufacturers investing in research and development, the day isn’t far when exploratory surgery will become obsolete.

The Present and Future of Radiotherapy

The radiotherapy market is growing due to several factors, such as an increase in the number of new cancer cases and technological advancement in the hardware and software used in radiotherapy. The current international markets are underequipped to address new cases of cancer. In low- and middle-income countries, only 10% of the population has access to radiotherapy. Therefore, there exists a wide gap between the demand and the installed base of equipment, which offers a huge opportunity for the companies to grow in the radiotherapy market. Expansion of the radiotherapy market can be both lifesaving and profitable.

Effective planning for the treatment

It is necessary, and continuous technological developments are taking place to minimize the exposure to radiation of healthy tissue, in order to avoid any side effect. This goal is a driving force of R&D for radiotherapy. Software plays an increasingly significant role in cancer care. Population growth and increased life expectancy are adding to the incidences of cancer. The software & services segment includes software, which is used for treatment planning, analysis, and services, which are needed for the maintenance and efficient use of radiotherapy devices. The software & services segment of the companies are expected to grow, as software products help improve physician engagement and clinical knowledge-sharing, patient care management, and the management of cancer clinics, radiotherapy centers, and oncology practices for better performance. Companies like Varian are continuously increasing their software portfolio. Software plays an increasingly significant role in cancer care. At the same time, healthcare systems are subject to harsh budgetary constraints in nearly every country. As a result, healthcare providers face the challenge of achieving more while using fewer resources. To achieve this goal, hospitals have a strong need for software platforms that make radiotherapy treatment cost-effective. The development of effective software will improve the delivery of advanced radiotherapy in the future.

Introduction of new technology
Technology is another salient feature. Radiation therapy remains a significant modality for cancer treatment, which is the primary driving factor for the designing of new techniques to improve the survival rate of cancer patients. New technologies, like proton beam therapy, are available in developed countries like the United States, Germany, and United Kingdom, due to well-established reimbursement policies. Proton therapy can be used on tissues that are highly sensitive, like brain, spine, and eye tumors. It is more accurate, as compared to other X-ray radiation therapies.

Advancement in the technology is also helping to execute the planning of the radiation therapy.

Technological advancement in existing technologies, such as CT imaging, is making imaging more accurate and consistent. This can give a better representation of a tumor and help in better planning. Already-existing technology, such as IMRT, SBRT, IGRT, conformal 3D, VMAT, and others that are used for radiation therapy treatment is undergoing various advancements. For example, Varian is developing a software, which can be used to develop better planning tools, in which statistical models can be used to calculate the quality of an IMRT treatment for a patient. This is expected to increase the usage of IMRT for treating cancer. IGRT is the type of radiotherapy. Research is more focused on IGRT, in order to prove its fewer side-effects. IGRT may include electronic portal imaging, fluoroscopy, ultrasound, CT scan reconstruction, and respiratory gating technology. SBRT is also growing as an option for treating cancer. SBRT is used to escalate the dose to the targeted tumor, which can increase local control while limiting the dose to nearby critical structures and normal tissues. This will cause minimum damage to the surrounding tissues and hence, will experience strong growth in the forecast period.

Internal radiation therapy holds a low share in the radiotherapy market. Containing Yttrium 90, a radioactive substance, this is also an emerging technology. There are only two manufacturers that provide commercialized forms of SIRT, as of April 2015. SIRT is becoming more of a mainstream treatment; other manufacturers are actively looking toward its marketing, resulting in the growth of the internal radiation therapy segment. However, SIRT is not yet widely available in the United Kingdom.

Internal radiation therapy is more precise in targeting cancerous cells because it is placed near a tumor, which reduces the risk of damaging healthy tissues and organs, thereby contributing to the growth of the internal radiation therapy market segment.

To increase the market share, companies are constantly investing in R&D. The positive results of this extensive R&D and strategic partnerships can help the companies gain a significant boost in the emerging field of radiotherapy.